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Abstract. The incremental stress-strain relation of dense packings of polygons is investigated by using molecular-
dynamics simulations. The comparison of the simulation results to the continuous theories is performed using
explicit expressions for the averaged stress and strain over a representative volume element. The discussion of the
incremental response raises two important questions of soil deformation: Is the incrementally nonlinear theory
appropriate to describe the soil mechanical response? Does a purely elastic regime exist in the deformation of
granular materials? In both cases the answer will be “no”. The question of stability is also discussed in terms
of the Hill condition of stability for non-associated materials. It is contended that the incremental response of
soils should be revisited from micromechanical considerations. A micromechanical approach assisted by discrete
element simulations is briefly outlined.
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1. Introduction

For many years the study of the mechanical behavior of soils was developed in the framework
of linear elasticity [1, Chapter 1] and the Mohr-Coulomb failure criterion [2]. However, since
the start of the development of the nonlinear constitutive relations in 1968 [3], a great variety
of constitutive models describing different aspects of soils have been proposed [4]. A crucial
question has been brought forward: What is the most appropriate constitutive model to inter-
pret the experimental results, or to implement a finite-element code? Or more precisely, why
is the constitutive relation I am using better than that one of the fellow in the next lab?

In the last years, the discrete-element approach has been used as a tool to investigate the
mechanical response of soils at the grain level [5]. Several averaging procedures have been pro-
posed to define the stress [6–8] and the strain tensor [9,10] in terms of the contact forces and
displacements at the individual grains. These methods have been used to perform a direct cal-
culation of the incremental stress-strain relation of assemblies of disks [11] and spheres [12],
without any a priori hypothesis about the constitutive relation. Some of the results lead to the
conclusion that the nonassociated elastoplasticity theory is sufficient to describe the observed
incremental behavior [11]. However, some recent investigations using three-dimensional load-
ing paths of complex loading histories seem to contradict these results [12,13]. Since the sim-
ple spherical geometries of the grains overestimate the role of rotations in realistic soils [13],
it is interesting to evaluate the incremental response using arbitrarily shaped particles.

In this paper we investigate the incremental response in the quasistatic deformation of
dense assemblies of polygonal particles. The comparison of the numerical simulations with the
constitutive theories is performed by introducing the concept of Representative Volume Ele-
ment (RVE). This volume is chosen the smear out the strong fluctuations of the stress and the
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deformation in the granular assembly. In the averaging, each grain is regarded as a piece of
continuum. By supposing that the stress and the strain of the grain are concentrated at the
small regions of the contacts, we obtain expressions for the averaged stress and strain over
the RVE, in terms of the contact forces, and the individual displacements and rotations of
the grains. The details of this homogenization method are presented in Section 2. A short
review of incremental, rate-independent stress-strain models is presented in Section 3. We em-
phasize particularly the classical Drucker-Prager elastoplastic models and the recently elabo-
rated theory of hypoplasticity. The details of the particle model are presented in Section 4.
The interparticle forces include elasticity, viscous damping and friction with the possibility of
slip. The system is driven by applying stress-controlled tests on a rectangular framework con-
sisting of four walls. Some loading programs will be implemented in Section 5, in order to
deal with four basic questions on the incremental response of soils: (1) The existence of ten-
sorial zones in the incremental response, (2) the validity of the superposition principle, (3) the
existence of a finite elastic regime and (4) the question of stability according to the Hill condi-
tion. A micromechanical approach for soil deformation is outlined in the concluding remarks.

2. Homogenization

The aim of this section is to calculate the macromechanical quantities, the stress and strain
tensors, from micromechanical variables of the granular assembly such as contact forces, rota-
tions and displacements of individual grains.

A particular feature of granular materials is that both the stress and the deformation gra-
dient are very concentrated in small regions around the contacts between the grains, so that
they vary strongly over short distances. The standard homogenization procedure smears out
these fluctuations by averaging these quantities over a RVE. The diameter d of the RVE must
be such that δ� d�D, where δ is the characteristic diameter of the particles and D is the
characteristic length of the continuous variables.

We use this procedure here to obtain the averages of the stress and the strain tensors over
a RVE in granular materials, which will allow us to compare the molecular dynamics simu-
lations to the constitutive theories. We regard stress and strain to be continuously distributed

Figure 1. Representative volume element (RVE) used to calculate the incremental response.
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through the grains, but concentrated at the contacts. It is important to note that this aver-
aging procedure would not be appropriate to describe the structure of the chain forces or
the shear band because typical variations of the stress correspond to few particle diameters.
Different averaging procedures involving coarse-grained functions [8], or cutting the space in
slide-shaped areas [10,14] allow to perform averages, and at the same time maintain these
features.

We will calculate the averages around a point x0 of the granular sample taking a RVE cal-
culated as follows: at the initial configuration, we select the grains whose centers of mass are
less than d from x0. Then the RVE is taken as the volume V enclosed by the initial configu-
ration of the grains; see Figure 1. The diameter d is taken such that the averaged quantities
are not sensible to an increase of the diameter by one particle diameter.

2.1. Micromechanical stress

The Cauchy stress tensor is defined using the force acting on an area element situated on or
within the grains. Let f be the force applied on a surface element a whose normal unit vector
is n. Then the stress is defined as the tensor satisfying [1, pp. 12–35]:

σkjnk = lim
a→0

fj/a, (1)

where the Einstein summation convention is used. In absence of body forces, the equilibrium
equations in every volume element lead to [1]:

∂σij /∂xi =0. (2)

We will calculate the average of the stress tensor σ̄ over the RVE:

σ̄ = 1
V

∫
V

σdV. (3)

Since there is no stress in the voids of the granular media, the averaged stress can be written
as the sum of integrals taken over the particles [7]

σ̄ = 1
V

N∑
α=1

∫
Vα

σijdV , (4)

where Vα is the volume of the particle α and N is the number of particles of the RVE. By
use of the identity

∂(xiσkj )

∂xk
=xi ∂σkj

∂xk
+σij , (5)

Equation (2), and the Gauss theorem, Equation (4) leads to [6]

σ̄ij = 1
V

∑
α

∫
Vα

∂(xiσkj )

∂xk
dV = 1

V

∑
α

∫
∂Vα

xiσkjnkda. (6)

The right-hand side is the sum over the surface integrals of each grain. Further, ∂Vα rep-
resents the surface of the grain α and n is the unit normal vector to the surface element da.

An important feature of granular materials is that the stress acting on each grain
boundary is concentrated in the small regions near to the contact points. Then we can use
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the definition given in (1) to express this stress on particle α in terms of the contact forces
by introducing Dirac delta functions:

σkjnk =
Nα∑
β=1

f
αβ
j δ(x −xαβ), (7)

where xαβ and fαβ are the position and the force at the contact β, and Nα is the number of
contacts of the particle α. Inserting (7) into (6), we obtain

σ̄ij = 1
V

∑
αβ

x
αβ
i f

αβ
j . (8)

Now we decompose xαβ =xα+�αβ , where xα is the position of the center of mass and �αβ

is the branch vector, connecting the center of mass of the particle to the point of application
of the contact force. Imposing this decomposition in (8), and using the equilibrium equations
at each particle

∑
β fαβ =0, we have

σ̄ij = 1
V

∑
αβ

�
αβ
i f

αβ
j . (9)

From the equilibrium equations of the torques
∑
β(�

αβ
i f

αβ
j −�αβj f αβi )=0 one obtains that

this tensor is symmetric, i.e.,

σ̄ij − σ̄j i =0. (10)

Then, the eigenvalues of this matrix are always real. This property leads to some simplifi-
cations, as we will see later.

2.2. Micromechanical strain

In elasticity theory, the strain tensor is defined as the symmetric part of the average of the dis-
placement gradient with respect to the equilibrium configuration of the assembly. Using the
law of conservation of energy, one can define the stress–strain relation in this theory [1, Sec-
tion 2.2]. In granular materials, it is not possible to define the strain in this sense, because any
loading involves a certain amount of plastic deformation at the contacts, so that it is not pos-
sible to define the initial configuration to calculate the strain. Nevertheless, one can define a
strain tensor in the incremental sense. This is defined as the average of the displacement ten-
sor taken from the deformation during a certain time interval.

At the micromechanical level, the deformation of the granular materials is given by a dis-
placement field u = r′ − r at each point of the assembly. Here r and r′ are the positions of a
material point before and after deformation. The average of the strain and rotational tensors
are defined as [15]:

ε̄= 1
2
(F +FT ), (11)

ω̄= 1
2
(F −FT ). (12)

Here FT is the transpose of the deformation gradient F , which is defined as [6]

Fij = 1
V

∫
V

∂ui

∂xj
dV . (13)



The incremental response of soils 15

Using the Gauss theorem, we transform it into an integral over the surface of the RVE

Fij = 1
V

∫
∂V

uinjda, (14)

where ∂V is the boundary of the volume element. We express this as the sum over the bound-
ary particles of the RVE

Fij = 1
V

Nb∑
α=1

∫
∂Vα

uinjda, (15)

where Nb is the number of boundary particles. It is now convenient to make some approx-
imations. First, the displacements of the grains during deformation can be considered rigid,
except for small deformations near to the contacts, which can be neglected. Then, if the dis-
placements are small in comparison with the size of the particles, we can write the displace-
ment of the material points inside particle α as:

ui(x)≈	xαi + eijk	φαj (xk −xαk ), (16)

where 	xα, 	φα and xα are displacement, rotation and center of mass of the particle α which
contains the material point x, and eijk is the antisymmetric unit tensor. Setting a parameteri-
zation for each surface of the boundary grains over the RVE, we can calculate the deformation
gradient explicitly in terms of grain rotations and displacements by substituting (16) in (15).

In the particular case of a bidimensional assembly of polygons, the boundary of the RVE
is given by a graph {x1,x2, . . . ,xNb+1 =x1} consisting of all the edges belonging to the exter-
nal contour of the RVE, as shown in Figure 1. In this case, Equation (15) can be transformed
into a sum of integrals over the segments of this contour.

Fij = 1
V

Nb∑
β=1

∫ xβ+1

xβ

[
	x

β
i + eik	φβ(xk −xβk )

]
n
β
j ds, (17)

where eik≡ei3k and the unit vector nβ is perpendicular to the segment
−−−−→
xβxβ+1. Here β corre-

sponds to the index of the boundary segment; 	xβ , 	φβ and xβ are displacement, rotation
and center of mass of the particle which contains this segment. Finally, by using the param-
eterization x =xβ + s(xβ+1 −xβ), where (0<s<1), we can integrate (17) to obtain

Fij = 1
V

∑
β

(
	x

β
i + eik	φβ�βk

)
N
β
j , (18)

where Nβ
j =ej,k

(
x
β+1
k −xβk

)
and �= (xβ+1 −xβ)/2−xα. We can calculate the stress tensor by

taking the symmetric part of this tensor using Equation (11). Contrary to the strain tensor
calculated for spherical particles [8,16], the individual rotations of the particles are included
in the calculation of this tensor. This is borne out by the fact that for nonspherical particles
the branch vector is not perpendicular to the contact normal vector, so that eik�

β
k N

β
j �=0.
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3. Incremental theory

Since the stress and the strain are symmetric tensors, it is advantageous to simplify the nota-
tion by defining these quantities as six-dimensional vectors:

σ̃ =




σ̄11

σ̄22

σ̄33√
2σ̄23√
2σ̄31√
2σ̄13




and ε̃=




ε̄11

ε̄22

ε̄33√
2ε̄23√
2ε̄31√
2ε̄13



. (19)

The coefficient
√

2 allows us to preserve the metric in this transformation: σ̃kσ̃k = σ̄ij σ̄ij .
The relation between these two vectors will be established in the general context of the rate-
independent incremental constitutive relations. We will focus on two particular theoretical
developments: the theory of hypoplasticity and the elastoplastic models. The similarities and
differences of both formulations are presented in the framework of the incremental theory
that follows.

3.1. General framework

In principle, the mechanical response of granular materials can be described by a func-
tional dependence of the stress σ̃ (t) at time t on the strain history {ε̃(t ′)}0<t ′<t . However,
the mathematical description of this dependence turns out to be very complicated due to the
nonlinearity and irreversible behavior of these materials. An incremental relation, relating the
incremental stress dσ̃ (t)= σ ′(t)dt to the incremental strain dε̃(t)= ε′(t)dt and some internal
variables κ that account for the deformation history, enable us to avoid these mathematical
difficulties [17]. This incremental scheme is also useful for solving geotechnical problems, since
the finite-element codes require that the constitutive relation be expressed incrementally.

Due to the large number of existing incremental relations, the necessity of a unified the-
oretical framework has been pointed out as an essential necessity to classify all the existing
models [18]. In general, the incremental stress is related to the incremental strain as follows:

Fκ(dε̃,dσ̃ ,dt)=0. (20)

Let us look at the special case where there is no rate-dependence in the constitutive rela-
tion. This means that this relation is not influenced by the time required during any loading
tests, as corresponds to the quasistatic approximation. In this case F is invariant with respect
to dt , and (20) can be reduced to:

dε̃=Gκ(dσ̃ ) (21)

In particular, the rate-independent condition implies that multiplying the loading time by
a scalar λ does not affect the incremental stress-strain relation:

∀λ, Gκ(λdσ̃ )=λGκ(dσ̃ ) (22)

The significance of this equation is that Gκ is an homogeneous function of degree one. In
this case, the application of the Euler identity shows that (21) leads to

dε̃=Mκ(σ̂ )dσ̃ , (23)
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where Mκ = ∂Gκ/∂(dσ̃ ) and σ̂ is the unitary vector defining the direction of the incremental
stress

σ̂ = dσ̃
|dσ̃ | . (24)

Equation (23) represents the general expression for the rate-independent constitutive rela-
tion. In order to determine the dependence of M on σ̂ , one can either perform experiments
by taking different loading directions, or postulate explicit expressions based on a theoretical
framework. The first approach will be considered in the Subsection 5.2, and the discussion
about some existing theoretical models will be presented in the following.

3.2. Elastoplastic models

The classical elastoplasticity theory was established by Drucker and Prager in the context if
metal plasticity [19]. Some extensions have been developed to describe sand, clays, rocks, con-
crete, etc. [2,20]. Here we present a short review of these developments in soil mechanics.

When a granular sample, subjected to a confining pressure, is loaded in the axial direction,
it displays a typical stress-strain response as shown in the left part of Figure 2. A continuous
decrease of the stiffness (i.e., the slope of the stress-strain curve) is observed during loading. If
the sample is unloaded, an abrupt increase in the stiffness is observed, leaving an irreversible
deformation. One observes that, if the stress is changed around some region below σA, which
is called the yield point, the deformation is almost linear and reversible. The first postulate of
the elastoplasticity theory establishes a stress region immediately below the yield point where
only elastic deformations are possible.
Postulate 1: For each stage of loading there exists a yield surface which encloses a finite region
in the stress space where only reversible deformations are possible.

The simple Mohr-Coulomb model assumes that the onset of plastic deformation occurs
at failure [2]. However, it has been experimentally shown that plastic deformation develops
before failure [21]. In order to provide a consistent description of these experimental results
with the elastoplasticity theory, it is necessary to assume that the yield function changes
with the deformation process [21]. This condition is schematically shown in Figure 2. Let
us assume that the sample is loaded until it reaches the stress σA upon which it is slightly
unloaded. If the sample is reloaded, it is able to recover the same stress-strain relation of the
monotonic loading once it reaches the yield point σA again. If one increases the load to the
stress σB , a new elastic regime can be observed after a loading reversal. In the elastoplasticity
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Figure 2. Evolution of the elastic regime (a) stress-strain relation (b) elastic regime in the stress space.
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theory, this result is interpreted by assuming that the elastic regime is expanded to a new
stress region below the yield point σB .
Postulate 2: The yield function remains when the deformations take place inside of the elastic
regime, and it changes as the plastic deformation evolves.

The transition from the elastic to the elastoplastic response is extrapolated for more gen-
eral deformations. Part (b) of Figure 2 shows the evolution of the elastic region when the
yield point moves in the stress space from σ̃A to σ̃B . The essential goal in the elastoplasticity
theory is to find the correct description of the evolution of the elastic regime with the defor-
mation, which is called the hardening law.

We will finally introduce the third basic assumption from elastoplasticity theory:
Postulate 3: The strain can be separated in an elastic (recoverable) and a plastic (unrecover-
able) component:

dε̃=dε̃e+dε̃p, (25)

The incremental elastic strain is linked to the incremental stress by introducing an elastic
tensor as

dσ̄ =D(σ̃ )dε̃e. (26)

To calculate the incremental plastic strain, we introduce the yield surface as

f (σ, κ)=0, (27)

where κ is introduced as an internal variable, which describes the evolution of the elastic
regime with the deformation. From experimental evidence, it has been shown that this var-
iable can be taken as a function of the cumulative plastic strain εp given by [2,20]

εp≡
∫ t

0

√
dεkdεkdt (28)

When the stress state reaches the yield surface, the plastic deformation evolves. This is
assumed to be derived from a scalar function of the stress as follows:

dεpj =
 ∂g

∂σj
, (29)

where g is the so-called plastic potential function. Following the Drucker-Prager postulates
we can show that g= f [19]. However, a considerable amount of experimental evidence has
shown that in soils the plastic deformation is not perpendicular to the yield surfaces [22]. It
is necessary to introduce this plastic potential to extend the Drucker-Prager models to the so-
called non-associated models.

The parameter 
 of (29) can be obtained from the so-called consistence condition. This
condition comes from the second postulate, which establishes that, after the movement of the
stress state from σ̃A to σ̃B = σ̃A+ d̃σ , the elastic regime must be expanded so that df =0, as
shown in Part (b) of Figure 2. Using the chain rule one obtains:

df = ∂f

∂σi
dσi + ∂f

∂κ

∂κ

∂ε
p
j

dεpj =0. (30)

Inserting (29) into (30), we obtain the parameter 
, viz.


=−
(
∂f

∂κ

∂κ

∂ε
p
j

∂g

∂σj

)−1
∂f

∂σi
dσi. (31)
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We define the vectors Ny
i =∂f/∂σi and Nf

i =∂g/∂σi and the unit vectors φ̂=Ny/|Ny | and
ψ̂ = Nf /|Nf | as the flow direction and the yield direction. In addition, the plastic modulus is
defined as

h=− 1
|Ny ||Nf |

∂f

∂κ

∂κ

∂ε
p
i

∂g

∂σi
. (32)

Substituting (31) in (29) and using (32), we obtain:

dε̃p= 1
h
φ̂ ·dσ̃ ψ̂ . (33)

Note that this equation has been calculated in the case where the stress increment takes
place outside the yield surface. If the stress increment occurs inside the yield surface, the sec-
ond Drucker-Prager postulate establishes that dε̃p=0. Thus, the generalization of (33) is given
by

dε̃p= 1
h

〈φ̂ ·dσ̃ 〉 ψ̂, (34)

where 〈x〉 = x when x > 0 and 〈x〉 = 0 otherwise. Finally, the total strain response can be
obtained from (25) and (34):

dε̃=D−1(σ̃ )dσ̃ + 1
h

〈φ̂ ·dσ̃ 〉 ψ̂. (35)

From this equation one can distinguish two zones in the incremental stress space where
the incremental relation is linear. They are the so-called tensorial zones defined by Darve
and Laouafa [17]. The existence of two tensorial zones and the continuity of the incremental
response at the boundary confirm that these two zones are essential features of the elastoplas-
tic models.

Although the elastoplasticity theory has been proved to work well for monotonically
increasing loading, it shows some deficiencies in the description of complex loading histories
[23, pp. 230–262]. There is also an extensive body of experimental evidence that shows that
the elastic regime is extremely small and that the transition from elastic to an elastoplastic
response is not as sharp as the theory predicts [24].

The bounding surface models have been introduced to generalize the classical elastoplastic
concepts [25]. Apart from the critical-state line, these models introduce the so-called bound-
ing surface in the stress space. For any given stress state within the surface, a proper mapping
rule associates a corresponding image stress point on this surface. A measure of the dis-
tance between the actual and the image stress points is used to specify the plastic modulus
in terms of a plastic modulus at the image stress state. Besides the versatility of this theory
to describe a wide range of materials, it has the advantage that the elastic regime can be con-
sidered as vanishingly small, so that this model can be used to give a realistic description of
unbounded granular soils. In the authors’ opinion, the most striking aspect of the bounding-
surface theory with vanishing elastic range is that it establishes a convergence point for two
different approaches of constitutive modeling: the elastoplastic approaches originated from the
Drucker-Prager theory, and the more recently developed hypoplastic theories.

3.3. Hypoplastic models

In recent years, an alternative approach for modeling soil behavior has been proposed, which
departs from the framework of the elastoplasticity theory [26–28]. The distinctive features of
this approach are:
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– The absence of the decomposition of strain in plastic and elastic components.
– The statement of a nonlinear dependence of the incremental response with the strain rate

directions.
The most general expression has been provided by the so-called second-order incremental
nonlinear models [27]. A particular class of these models which has received special atten-
tion in recent times is provided by the theory of hypoplasticity [26,28]. A general outline of
this theory was proposed by Kolymbas [26], leading to different formulations, such as the K-
hypoplasticity developed in Karlsruhe [29], and the CLoE-hypoplasticity originated in Greno-
ble [28]. In hypoplasticity, the most general constitutive equation takes the following form:

dσ̃ = L(σ̃ , ν)dε̃+ Ñ(σ̃ , ν)|dε̃|, (36)

where L is a second-order tensor and Ñ is a vector, both depending on the stress σ̃ and
the void ratio ν. Hypoplastic equations provide a simplified description of loose and dense
unbounded granular materials. A reduced number of parameters are introduced, which are
very easy to calibrate [30].

In the theory of hypoplasticity, the stress-strain relation is established by means of an
incremental nonlinear relation without any recourse to yield or boundary surfaces. This non-
linearity is reflected in the fact that the relation between the incremental stress and the incre-
mental strain given in (36) is always nonlinear. The incremental nonlinearity of the granular
materials is still under discussion. Indeed, an important feature of the incremental nonlinear
constitutive models is that they break away from the superposition principle:

dσ̃ (dε̃1 +dε̃2) �=dσ̃ (dε̃1)+dσ̃ (dε̃2), (37)

which is equivalent to:

dε̃(dσ̃1 +dσ̃2) �=dε̃(dσ̃1)+dε̃(dσ̃2) (38)

An important consequence of this feature is addressed by Kolymbas [31, pp. 213–223] and
Darve et al. [27]. They consider two stress paths; the first one is smooth and the second
results from the superposition of small deviations as shown in Figure 3. The superposition
principle establishes that the strain response of the stair-like path converges to the response
of the proportional loading in the limit of arbitrarily small deviations. More precisely, the
strain deviations 	ε and the steps of the stress increments 	σ satisfy lim	σ→0	ε=0. For the
hypoplastic equations, and in general for the incremental nonlinear models, this condition is
never satisfied. For incremental relations with tensorial zones, this principle is satisfied when-
ever the increments take place inside one of these tensorial zones. It should be added that
there is no experimental evidence disproving or confirming this rather questionable superpo-
sition principle.

p

q

e

Figure 3. Smooth and stair-like stress paths and corresponding strain responses. p and q represent the pressure and
the deviatoric stress. e and γ are the volumetric and deviatoric strain components.
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4. Discrete model

We present here a two-dimensional discrete-element model which will be used to investigate
the incremental response of granular materials. This model consists of randomly generated
convex polygons, which interact via contact forces. There are some limitations in the use
of such a two-dimensional code to model physical phenomena that are three-dimensional in
nature. These limitations have to be kept in mind in the interpretation of the results and its
comparison with the experimental data. In order to give a three-dimensional picture of this
model, one can consider the polygons as a collection of bricks with randomly-shaped polyg-
onal basis. Alternatively, one could consider the polygons as three-dimensional grains whose
centers of mass all move in the same plane. In the authors’ opinion, it is more sensible to
consider this model as an idealized granular material that can be used to check the constitu-
tive models.

The details of the particle generation, the contact forces, the boundary conditions and the
molecular-dynamics simulations are presented in this section.

4.1. Generation of polygons

The polygons representing the particles in this model are generated by using the method of
Voronoi tessellation [32]. This method is schematically shown in Figure 4. First, a regular
square lattice of side � is created. Then, we choose a random point in each cell of the rect-
angular grid. Subsequently, each polygon is constructed by assigning to each point that part
of the plane that is nearer to it than to any other point. The details of the construction of
the Voronoi cells can be found in the literature [33,34].

By use of the Euler theorem, it has been shown analytically that the mean number of
edges of this Voronoi construction must be 6 [34, pp. 295–296]. The number of edges of
the polygons is distributed between 4 and 8 for 98·7% of the polygons. The orientational
distribution of edges is isotropic, and the distribution of areas of polygons is symmetric
around its mean value �2. The probabilistic distribution of areas follows approximately a
Gaussian distribution with variance of 0·36�2.

Figure 4. Voronoi construction used to generate the convex polygons. The dots indicate the point used in the tes-
sellation. Periodic boundary conditions were used.
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4.2. Contact forces

In order to calculate the forces, we assume that all the polygons have the same thickness L.
The force between two polygons is written as F= fL and the mass of the polygons is M=mL.
In reality, when two elastic bodies come into contact, they have a slight deformation in the
contact region. In the calculation of the contact force we assume that the polygons are rigid,
but we allow them to overlap. Then, we calculate the force from this virtual overlap.

The first step towards the calculation of the contact force is the definition of the line repre-
senting the flattened contact surface between the two bodies in contact. This is defined from
the contact points resulting from the intersection of the edges of the overlapping polygons.
In most cases, we have two contact points, as shown in the left part of Figure 5. In such
a case, the contact line is defined by the vector C = −−→

C1C2 connecting these two intersection
points. In some pathological cases, the intersection of the polygons leads to four or six con-
tact points. In these cases, we define the contact line by the vector C =−−→

C1C2 +−−→
C3C4 or C =−−→

C1C2 +−−→
C3C4 +−−→

C5C6, respectively. This choice guarantees a continuous change of the contact
line, and therefore of the contact forces, during the evolution of the contact.

The contact force is separated as fc= fe+ fv, where fe and fv are the elastic and viscous
contribution. The elastic part of the contact force is decomposed as fe =f en n̂c+f et t̂ c. The cal-
culation of these components is explained below. The unit tangential vector is defined as t̂ c=
C/|C|, and the normal unit vector n̂c is taken perpendicular to C. The point of application
of the contact force is taken as the center of mass of the overlapping polygons.

As opposed to the Hertz theory for round contacts, there is no exact way to calculate the
normal force between interacting polygons. An alternative method has been proposed in order
to model this force [35]. The normal elastic force is given by f en =−knA/Lc, where kn is the
normal stiffness, A is the overlapping area and Lc is a characteristic length of the polygon
pair. Our choice of Lc is 1/2(1/Ri +1/Rj ) where Ri and Rj are the radii of the circles of the
same area as the polygons. This normalization is necessary to be consistent in the units of
force [32].

In order to model the quasistatic friction force, we calculate the elastic tangential force
using an extension of the method proposed by Cundall-Strack [5]. An elastic force f et =
−kt	xt proportional to the elastic displacement is included at each contact, where kt is the
tangential stiffness. The elastic displacement 	xt is calculated as the time integral of the tan-
gential velocity of the contact during the time when the elastic condition |f et |<µf en is sat-
isfied. The sliding condition is imposed, keeping this force constant when |f et | = µf en . The

C
C

t+1t

1
4

C3

C2

1C

C2

Figure 5. Contact points Ci before (left) and after the formation of a pathological contact (right). The vector
denotes the contact line; t represents the time step.
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straightforward calculation of this elastic displacement is given by the time integral starting
at the beginning of the contact:

	xet =
∫ t

0
vct (t

′)�(µf en −|f et |)dt ′, (39)

where � is the Heaviside step function and vct denotes the tangential component of the rela-
tive velocity vc at the contact:

vc= vi − vj +ωi ×�i −ωj ×�j . (40)

Here vi is the linear velocity and ωi is the angular velocity of the particles in contact. The
branch vector �i connects the center of mass of particle i with the point of application of
the contact force.

Damping forces are included in order to allow for rapid relaxation during the preparation
of the sample, and to reduce the acoustic waves produced during the loading. These forces
are calculated as

fcv =−m(γnvcnn̂c+γtvct t̂ c), (41)

m= (1/mi + 1/mj )−1 being the effective mass of the polygons in contact; n̂c and t̂ c are the
normal and tangential unit vectors defined before, and γn and γt are the coefficients of vis-
cosity. These forces introduce time-dependent effects during the cyclic loading. However, we
will show that these effects can be arbitrarily reduced by increasing the loading time, which
corresponds to the quasistatic approximation.

4.3. Molecular-dynamics simulation

The evolution of the position xi and the orientation ϕi of the ith polygon is governed by the
equations of motion:

mi ẍi =
∑
c

fci +
∑
b

fbi ,

Ii ϕ̈i =
∑
c

�ci × fc
i +

∑
b

�bi × fbi . (42)

Here mi and Ii are the mass and moment of inertia of the polygon i. The first summation
goes over all particles in contact with this polygon. According to the previous section, these
forces fc are given by

fc=−(knA/Lc+γnmvcn)nc− (	xct +γtmvct )tc, (43)

The second summation on the right hand of (42) goes over all the vertices of the polygons
in contact with the walls. This interaction is modeled by using a simple visco-elastic force.
First, we allow the polygons to penetrate the walls. Then, for each vertex of the polygon α

inside of the walls we include a force

fb=−knδn −γbmαvb, (44)

where δ is the penetration length of the vertex, n is the unit normal vector to the wall, and
vb is the relative velocity of the vertex with respect to the wall.

We use a fifth-order Gear predictor-corrector method for solving the equation of motion
[36, pp. 340–342]. This algorithm consists of three steps. The first step predicts position and
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velocity of the particles by means of a Taylor expansion. The second step calculates the forces
as a function of the predicted positions and velocities. The third step corrects the positions
and velocities in order to optimize the stability of the algorithm. This method is much more
efficient than the simple Euler approach or the Runge-Kutta method, especially for problems
where very high accuracy is a requirement.

The parameters of the molecular-dynamics simulations were adjusted according to the fol-
lowing criteria: (1) guarantee the stability of the numerical solution, (2) optimize the time of
the calculation, and (3) provide a reasonable agreement with the experimental data.

There are many parameters in the molecular-dynamics algorithm. Before choosing them, it
is convenient to make a dimensional analysis. In this way, we can maintain the scale invari-
ance of the model and reduce the parameters to a minimum of dimensionless constants. First,
we introduce the following characteristic times of the simulations: the loading time t0, the
relaxation times tn= 1/γn, tt = 1/γt , tb= 1/γb and the characteristic period of oscillation ts =√
ρ�2/kn of the normal contact.

Using the Buckingham Pi theorem [37], one can show that the strain response, or any
other dimensionless variable measuring the response of the assembly during loading, depends
only on the following dimensionless parameters: α1 = tn/ts , α2 = tt /ts , α3 = tb/ts , α4 = t0/ts , the
ratio ζ = kt/kn between the stiffnesses, the friction coefficient µ and the ratio σi/kn between
the stresses applied on the walls and the normal stiffness.

The variables αi will be called control parameters. They are chosen in order to satisfy the
quasistatic approximation, i.e., the response of the system does not depend on the loading
time, but a change of these parameters within this limit does not affect the strain response.
Parameter values α2 = 0·1 and α2 = 0·5 were taken large enough to have a high dissipation,
but not too large to keep the numerical stability of the method. The value α3 =0·001 is cho-
sen by optimizing the time of consolidation of the sample in the Subsection 4.4. The ratio
α4 = t0/ts = 10,000 was chosen large enough in order to avoid rate-dependence in the strain
response, corresponding to the quasistatic approximation. Technically, this is performed by
looking for the value of α4 such that a reduction of it by half results in a change of the
stress–strain relation less than 5%.

The parameters ζ and µ can be considered as material parameters. They determine the con-
stitutive response of the system, so they must be adjusted to the experimental data. In this
study, we have adjusted them by comparing the simulation of biaxial tests of dense polygonal
packings with the corresponding biaxial tests with dense Hostun sand [38]. First, the initial
Young modulus of the material is linearly related to the value of normal stiffness of the con-
tact. Thus, kn=160 MPa is chosen by fitting the initial slope of the stress–strain relation in the
biaxial test. Then, the Poisson ratio depends on the ratio ζ = kt/kn. Our choice kt = 52·8MPa
gives an initial Poisson ratio of 0·2. This is obtained from the initial slope of the curve of
volumetric strains versus axial strain. The angles of friction and the dilatancy are increasing
functions of the friction coefficient µ. Taking µ=0·25 yields angles of friction of 30–40 degrees
and dilatancy angles of 10–20 degrees, which are similar to the experimental data of river sand
[39].

4.4. Sample preparation

The Voronoi construction presented above leads to samples with no porosity. This ideal case
contrasts with realistic soils, where only porosities up to a certain value can be achieved. In
this section, we present a method to create stable, irregular packings of polygons with a given
porosity.
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The porosity can be defined using the concept of void ratio. This is defined as the ratio
of the volume of the void space to the volume of the solid material. It can be calculated as:

ν= Vt

Vf −V0
−1. (45)

This is given in terms of the area enclosed by the walls Vt , the sum of the areas of the poly-
gons Vf and the sum of the overlapping areas between them V0.

Of course, there is a maximal void ratio that can be achieved, because it is impossible to
pack particles with an arbitrarily high porosity. The maximal void ratio νm can be detected by
moving the walls until a certain void ratio is reached. We find a critical value, above which the
particles can be arranged without touching. Since there are no contacts, the assembly cannot
support a load, and even applying gravity will cause it to compactify. For a void ratio below
this critical value, there will be particle overlap, and the assembly is able to sustain a certain
load. This maximal value is around 0·28.

The void ratio can be decreased by reducing the volume between the walls. The drawback
of this method is that it leads to significant differences between the inner and outer parts
of the boundary assembly and hence unrealistic overlaps between the particles, giving rise to
enormous pressures. Alternatively, one can confine the polygons by applying gravity to the
particles and on the walls. Particularly, homogeneous, isotropic assemblies, as shown in Fig-
ure 6 can be generated by a gravitational field g =−gr, where r is the vector connecting the
center of mass of the assembly to the center of the polygon.

When the sample is consolidated, repeated shear-stress cycles are applied from the walls,
superimposed to a confining pressure. The external load is imposed by applying a force [pc+
qc sin(2πt/t0)]W and [pc+qc cos(2πt/t0)]H on the horizontal and vertical walls, respectively.
Here W and H are the width and the height of the sample, respectively. If we take pc=16 kPa
and qc < 0·4pc, we observe that the void ratio decreases as the number of cycles increases.
Void ratios of around 0·15 can be obtained. It is worth mentioning that after some thousands
of cycles the void ratio is still slowly decreasing, making it difficult to identify this minimal
value.

5. Simulation results

In order to investigate different aspects of the incremental response, some numerical sim-
ulations were performed. Different polygonal assemblies of 400 particles were used in the
calculations. The loading between two stress states was controlled by applying forces [σ i1 +
(σ
f

1 − σ i1)r(t)]W and [σ i2 + (σ f2 − σ i2)r(t)]H . A smooth modulation r(t)= (1 − cos(2πt/t0))/2
is chosen in order to minimize the acoustic waves produced during loading. The initial void
ratio is around ν=0·22.

The components of the stress are represented by p= (σ1 +σ2)/2 and q= (σ1 −σ2)/2, where
σ1 and σ2 are the eigenvalues of the averaged stress tensor on the RVE. Equivalently, the
coordinates of the strain are given by the sum γ = ε2 − ε1 and the difference e=−ε1 − ε2 of
the eigenvalues of the strain tensor. We use the convention that e>0 means compression of
the sample. The diameter of the RVE is taken as d=16� . All the calculations were taken in
the quasistatic regime.

5.1. Superposition principle

We start by exploring the validity of the superposition principle presented in Subsection 3.3.
Part (a) of Figure 7 shows the loading path during the proportional loading under constant
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Figure 6. Polygonal assembly confined by a rectangu-
lar frame of walls.
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Figure 7. Numerical responses obtained from MD
simulations of a rectilinear proportional loading
(with constant lateral pressure) and stair-like paths.
(a) Loading stress paths. (b) corresponding strain
responses.

lateral pressure. This path is also decomposed into pieces divided into two parts: one is an
incremental isotropic loading (	p =	σ and 	q = 0), the other an incremental pure-shear
loading (	q=	σ and 	p=0). The length of the steps 	σ varies from to 0·4p0 to 0·001p0,
where p0 =640 kPa. Part (b) of Figure 7 shows that, as the steps decrease, the strain response
converges to the response of the proportional loading. In order to verify this convergence, we
calculate the difference between the strain response of the stair-like path γ (e) and the propor-
tional loading path γ0(e) as:

	ε≡max
e

|γ (e)−γ0(e)|, (46)

for different steps sizes. This is shown in Figure 8 for seven different polygonal assemblies.
The linear interpolation of this data intersects the vertical axis at 3×10−7. Since this value is
below the error given by the quasi-static approximation, which is 3×10−4, the results suggest
that the responses converge to that of the proportional load. Therefore we find that, within
our error bars, the superposition principle is valid.

Close inspection of the incremental response will show that the validity of the superposi-
tion principle is linked to the existence of tensorial zones in the incremental-stress space. Prior
to this, a short introduction to the strain envelope responses will be given.
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5.2. Incremental response

A graphical illustration of the constitutive models can be given by employing the so-called
response envelopes. They were introduced by Gudehus [18] as a useful tool to visualize
the properties of a given incremental constitutive equation. The strain-envelope response is
defined as the image {dε̃=G(dσ̃ , σ̃ )} in the strain space of the unit sphere in the stress space,
which becomes a potato-like surface in the strain space.

In practice, the determination of the stress-envelope responses is difficult because it
requires one to prepare many samples with identical material properties. Numerical simula-
tions result as an alternative to the solution of this problem. They allow one to create clones
of the same sample, and to perform different loading histories in each one of them.

In the case of a plane-strain test, where there is no deformation in one of the spatial
directions, the strain-envelope response can be represented in a plane. According to (36), this
response results in a rotated, translated ellipse in the hypoplastic theory, whereas it is given
by a continuous curve consisting of two pieces of ellipses in the elastoplasticity theory, as a
result of (35). It is then of obvious interest to compare these predictions with the stress-enve-
lope response of the experimental tests.

Figure 9 shows the typical strain response resulting from different stress-controlled load-
ings in a dense packing of polygons. Each point is obtained from the strain response in
a specific direction of the stress space, with the same stress amplitude of 10−4p0. We take
q0 =0·45p0 and p0 =160 kPa in this calculation. The best fit of these results in the envelopes
response of the elastoplasticity (two pieces of ellipses). For comparison the hypoplasticity (one
ellipse) is also shown in Figure 9.

From these results we conclude that the elastoplasticity theory is more accurate in describ-
ing the incremental response of our model. One can draw the same conclusion by tak-
ing different strain values with different initial stress values [40]. These results have shown
that the incremental response can be accurately described using the elastoplastic relation of
Equation (35). The validity of this equation is supported by the existence of a well-defined
flow rule for each stress state [41].

5.3. Yield function

In Subsection 3.2, we showed that the yield surface is an essential element in the formulation
of the Drucker-Prager theory. This surface encloses a hypothetical region in the stress space
where only elastic deformations are possible [19]. The determination of such a yield surface
is essential to determine the dependence of the strain response on the history of the deforma-
tion.

We attempt to detect the yield surface by using a standard procedure proposed in experi-
ments with sand [24]. Figure 10 shows this procedure. Initially the sample is subjected to an
isotropic pressure. Then the sample is loaded in the axial direction until it reaches the yield-
stress state with pressure p and deviatoric stress q. Since plastic deformation is found at this
stress value, the point (p, q) can be considered as a classical yield point. Then, the Druc-
ker-Prager theory assumes the existence of a yield surface containing this point. In order to
explore the yield surface, the sample is unloaded in the axial direction until it reaches the
stress point with pressure p−	p and deviatoric stress q−	p inside the elastic regime. Then
the yield surface is constructed by re-loading in different directions in the stress space. In each
direction, the new yield point must be detected by a sharp change of the slope in the stress-
strain curve, indicating plastic deformations.
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Figure 9. Numerical calculation of the incremental
strain response. The dots are the numerical results.
The solid curve represents the fit to the elastoplas-
ticity theory. The dashed curve is the hypoplastic fit.
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Figure 10. Method to obtain the yield surface. Load-
unload-reload tests are performed taking different
directions in the reload path. In each direction, the
point of the reload path where the yielding begins
is marked. The yield function is constructed by
connecting these points.

Figure 11 shows the strain response taking different load directions in the same sample.
The initial stress of the sample is given by q0 =0·5p0 and p0 =160 kPa. If the direction of the
reload path is the same as that of the original load (θ=45◦), we observe a sharp decrease of
stiffness when the load point reaches the initial yield point, which corresponds to the origin in
Figure 11. However, if one takes a direction of re-loading different from 45◦, the decrease of
the stiffness with the loading becomes smooth. Since there is no straightforward way to iden-
tify those points where the yielding begins, the yield function, as it was introduced by Drucker
and Prager [19] in order to describe a sharp transition between the elastic and plastic regions,
is not consistent with our results.

Experimental studies on dry sand seem to show that the truly elastic region is proba-
bly extremely small [4]. Moreover, a micro-mechanic investigation of the mechanical response
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Figure 11. Strain responses according to Figure 10. The solid lines show the strain response from different reload
directions. The dashed contours represent the strain envelope responses for different stress increments |	σ |.
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of granular ratcheting under cyclic loading has shown that any load involves sliding con-
tacts, and hence, plastic deformation [41]. These studies lead to the conclusion that the elastic
region, used in the Drucker-Prager theory to give a dependence of the response on recent his-
tory, is not a necessary feature of granular materials.

The absence of elastic regime leads to the following question: Is the hypoplastic the-
ory more appropriate than the elastoplastic models to describe these simulations results? Since
hypoplastic models do not introduce any elastic regime, they seem to provide a good alterna-
tive. However, hypoplasticity departs from the superposition principle, which is not consistent
with our results. An alternative approach to hypoplasticity could be made from the bound-
ing-surface theory, by shrinking the elastic regime to the current stress point [42]. With this
limit one can reproduce the observed continuous transition from the elastic to the elastoplas-
tic behavior and at the same time keep the tensorial zones. However, it has been shown that
this limit leads to a constitutive relation in terms of some internal variables, which in this the-
ory lack physical meaning. In the authors’ opinion, a micro-mechanical interpretation of these
internal variables will be important to capture this essential feature of mechanics of granular
materials, namely that any loading involves plastic deformation.

6. Instabilities

Instability has been one of the classical topics in soil mechanics. Localization from a previ-
ously homogeneous deformation to a narrow zone of intense shear is a common mode of
failure of soils [21,39,43]. The Mohr-Coulomb criterion is typically used to understand the
principal features of the localization [43]. This criterion was improved by the Drucker condi-
tion, based on the hypothesis of the normality, which results in a plastic flow perpendicular to
the yield surface [19]. This theory predicts that the instability appears when the stress of the
sample reaches the plastic limit surface. This surface is given by the stress states where the
plastic deformation becomes infinite. In previous work, it is shown that the normality pos-
tulate is not fulfilled in the incremental response of this model, because the flow and yield
directions given by (34) are different [40]. Thus, it is interesting to see if the Drucker stability
criterion is still valid.

According to the flow rule of (34), the plastic-limit surface can be found by looking for
the stress values where the plastic modulus vanishes. The dependence of this modulus on the
stress fits the following power law relation [40]:

h=h0

[
1− q

q0

(
p0

p

)ϑ]η
. (47)

This is given in terms of the following four parameters: the plastic modulus h0 = 14·5 ± 0·05
at q= 0, the constant q0 = 0·85 ± 0·05, and the exponents η= 2·7 ± 0·04 and ϑ = 0·99 ± 0·02.
Then, the plastic-limit surface is given by the stress states with zero plastic modulus:

qp

q0
=
(
p

p0

)ϑ
. (48)

On the other hand, the failure surface can be defined by the limit of the stress values
where the material becomes unstable. It has been shown that this is given by the following
relation [40]

q

qc
=
(
p

p0

)β
. (49)
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Here p0 =1·0 MPa is the reference pressure, and qc=0·78±0·03 MPa. The power-law depen-
dence on the pressure, with exponent β=0·92±0·02 implies a small deviation from the Mohr-
Coulomb theory where the relation is strictly linear.

By comparing (49) and (48) one observes that during loading the instabilities appear
before reaching the plastic-limit surface. Theoretical studies have also shown that in the case
of nonassociated materials, i.e., where the flow direction does not agree with the yield direc-
tion, the instabilities can appear strictly inside of the plastic-limit surface [17]. In this context,
the question of instability must be reconsidered beyond the Drucker condition.

The stability for nonassociated elastoplastic materials has been investigated by Hill, who
established the following sufficient stability criterion [44].

∀dε̃, dσ̃ ·dε̃ >0. (50)

The analysis of this criterion of stability will be presented here based on the constitutive
relation given by (35). The stability condition of this constitutive relation can be evaluated by
introducing the normalized second-order work [17]:

d2W ≡ dσ̃ ·dε̃
|dσ̃ |2 (51)

The Hill condition of stability can now be obtained by substituting (35) in this expression.
This results in

d2W = σ̂D−1σ̂ + 〈cos(θ +φ)〉
h

cos(θ +ψ)>0, (52)

where σ̂ is defined in (24). In the case where the Drucker normality postulate ψ=φ is valid,
Equation (52) is strictly positive and, therefore, this stability condition would be valid for all
the stress states inside the plastic-limit surface. Indeed, for a nonassociated flow rule as in our
model, the second-order work is not strictly positive for all the load directions, and can take
zero values inside the plastic-limit surface (i.e., during the hardening regime where h>0).

To analyze this instability, we adopt a circular representation of d2W shown in Figure 12.
The dashed circles in these figures represent those regions where d2W < 0. For stress ratios
below q/p= 0·7 we found that the second order work is strictly positive. Thus, according to
the Hill stability condition, this region corresponds to stable states. For the stress ratio q/p=
0·8, the second-order work becomes negative between 27◦<θ <36◦ and 206◦<θ <225◦. This
leads to a domain of the stress space that is strictly inside the plastic-limit surface where the
Hill condition of stability is not fulfilled, and therefore the material is potentially unstable.

Numerical simulations of biaxial tests show that strain localization is the most typical
mode of failure [7,45,46]. The fact that it appears before the sample reaches the plastic-limit
surface suggests that instability is not completely determined by the current macroscopic
stress of the material, as predicted by the Drucker-Prager theory. More recent analytic [47]
and experimental [38,39] works have focused on the role of the micro-structure on the local-
ized instabilities. Frictional slips at the particles have been used to define additional degrees of
freedom [47]. The introduction of the particle diameter in the constitutive relations results in a
correct prediction of the shear-band thickness [15, pp. 334–381]. The new degrees of freedom
of these constitutive models are still not clearly connected to the micro-mechanical variables
of the grains, but with the development of numerical simulations this aspect can be better
understood.
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Figure 12. The solid lines show the second order work as a function of the direction of load for three different
stress ratios q/p= 0 · 6 (left), 0 · 7 (center), and 0 · 65 (right) with pressure p= 160 KPa. The dashed circles enclose
the region where d2W <0.

7. Concluding remarks

In this paper we have obtained explicit expressions for the averaged stress and strain tensors
over a RVE, in terms of the micro-mechanical variables, contact forces and the individual dis-
placements and rotations of the grains. A short review on the incremental models has been
given. The most salient aspects of both elastoplastic and hypoplastic models has been verified
using molecular dynamics simulations on a polygonal packing. The results are summarized as
follows:
– The elastoplasticity theory, with two tensorial zones, provides a more accurate description

of the incremental response than the hypoplastic theory.
– In contradiction to the incremental nonlinear models, the simulation results show that the

superposition principle is accurately satisfied.
– It is not possible to detect the finite elastic regime predicted by the elastoplasticity theory.

This is due to the fact that the transition from elasticity to elastoplasticity is not as sharp
as the Drucker-Prager theory predicts, but a smooth transition occurs.

– The calculation of the plastic-limit condition and the failure surface shows that the failure
appears during the hardening regime h>0. Using the Hill condition of stability, we may
interpret the resulting instability as an effect of the non-associated flow rule of the plastic
deformations.

These conclusions appear to contradict both the Drucker-Prager theory and the hypoplas-
tic models. In future work, it would be important to revisit the question of the incremental
nonlinearity of soils from micro-mechanical considerations. The recent improvements in dis-
crete-element modeling allow one to perform this investigation. We are now ready to develop
a micromechanical model giving the internal variables of the constitutive models in terms of
the microstructural information, such as polydispersity of the grains, fabric coefficients, and
force distributions.

To start the micromechanical investigation of those internal variables, it would be neces-
sary to introduce an explicit relation between the incremental stress-strain relation and some
statistics measuring the anisotropy of the granular assembly and the fluctuations of the con-
tact forces. One way to do that is to introduce the statistic distribution �(�,ϕ, f) of the mi-
cromechanical variables. Here � and ϕ are the magnitude and the orientation of the vector
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connecting the center of mass of the grain with the point of application of the contact force f .
In the most general case, the incremental stress-strain relation can be given by

dσij =
∫

λ

dλ�(λ)Rijkl(λ)dεkl . (53)

Here λ= (�, ϕ, fn, ft ) and Rijkl is a tensorial quantity, taking into account the local fluc-
tuations of the deformation at the contacts with respect to the principal value of the averaged
incremental strain tensor dε [48]. Note that the marginal distribution of � contains the basic
statistics which have been intensively investigated in the microstructure of granular material:
the size distribution �(�) [38,49,50], anisotropy of the contact network �(ϕ) [10,16,51–53]
and the contact-force distribution �(f) [54–57]. A great challenge is to find explicit expres-
sions for the incremental stress-strain response in terms of internal variables, given as a func-
tion of this distribution �. This investigation would be an extension of the ideas which have
been proposed to relate the fabric tensor to the constitutive relation [16,51–53].

The traditional fabric tensor, measuring the distribution of the orientation of the contacts,
cannot fulfill a complete micromechanical description, because it does not make a distinction
between elastic and sliding contacts [16]. New structure tensors, taking into account the statis-
tics of the subnetwork of the sliding contacts, must be introduced to give a micromechanical
basis to the plastic deformation. The identification of these internal variables, the determina-
tion of their evolution equations, and their connection with the macroscopic variables would
be a key step in the development of an appropriate continuous description of granular mate-
rials.

The evolution equation for these internal variables could be determined from the evolution
equation of � during loading. This can be obtained from the conservation equations of the
contacts [58,59]:

∂�

∂t
+vi ∂�

∂λi
=Q(λ). (54)

The velocity field v(λ)= dλ/dt can be investigated from DEM by following the evolution
of the contacts during the simulation. The source term Q takes into account the contacts
arising or disappearing during the deformation of the granular assembly, as a consequence
of the rearrangement of the granular skeleton and the eventual fragmentation of the grains.
In future work, an important goal would be to determine the role of such micromechanical
rearrangements in the overall mechanical response of granular materials.

Acknowledgments

We thank F. Darve, Y. Kishino, D. Kolymbas, F. Calvetti, Y.F. Dafalias, S. McNamara and
R. Chambon for helpful discussions and acknowledge the support of the Deutsche Forschungs-
gemeinschaft within the research group Modellierung kohäsiver Reibungsmaterialen and the
European DIGA project HPRN-CT-2002-00220.

References

1. L.D. Landau and E.M. Lifshitz, Theory of Elasticity, Volume 7 of Course of Theoretical Physics. Moscow:
Pergamon Press (1986) 362pp.

2. P.A. Vermeer, Non-associated plasticity for soils, concrete and rock. In: H.J. Herrmann, J.-P. Hovi and S.
Luding (eds), Physics of Dry Granular Media - NATO ASI Series E350. Dordrecht: Kluwer Academic Pub-
lishers (1998) pp. 163–193.



The incremental response of soils 33

3. K.H. Roscoe and J.B. Burland, On the generalized stress-strain behavior of ‘wet’ clay. In: J. Heyman and
F.A. Leckie (eds), Engineering Plasticity. Cambridge: Cambridge University Press (1968) pp. 535–609.

4. G. Gudehus, F. Darve and I. Vardoulakis, Constitutive Relations of Soils. Rotterdam: Balkema (1984) pp. 5–12.
5. P.A. Cundall and O.D.L. Strack, A discrete numerical model for granular assemblages. Géotechnique 29
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(1987) 271–283.

48. F. Alonso-Marroquin, S. McNamara and H.J. Herrmann, Micromechanische Untersuchung des granulares
Ratchetings. Antrag an die Deutsche Forschungsgemeinschaft, Universität Stuttgart (2003).

49. G.R. McDowell, M.D. Bolton, and D. Robertson, The fractal crushing of granular materials. J. Mech. Phys.
Solids 44 (1996) 2079–2102.

50. M.D. Bolton, The role of micro-mechanics in soil mechanics. In: M. Hyodo and Y. Nakata (eds), Interna-
tional Workshop on Soil Crushability. Japan: Yamaguchi University (2002) pp. 166–178.

51. C. Thornton and D.J. Barnes, Computer simulated deformation of compact granular assemblies. Acta Mech.
64 (1986) 45–61.

52. S. Luding, Micro-macro transition for anisotropic, frictional granular packings. Int. J. Sol. Struct. 41 (2004)
5821–5836.

53. M. Madadi, O. Tsoungui, M. Lätzel and S. Luding, On the fabric tensor of polydisperse granular media
in 2D. Int. J. Sol. Struct. 41 (2004) 2563–2580.

54. F. Radjai, M. Jean, J.J. Moreau and S. Roux, Force distribution in dense two-dimensional granular systems.
Phys. Rev. Lett. 77 (1996) 274–277.

55. K. Bagi, Statistical analysis of contact force components in random granular assemblies. Granular Matter 5
(2003) 45–54.

56. H.M. Jaeger, S.R. Nagel and R.P. Behringer, Granular solids, liquids and gases. Rev. Mod. Phys. 68 (1996)
1259–1273.

57. D. Coppersmith, Model for force fluctuations in bead packs. Phys. Rev. E 53 (1996) 4673–4685.
58. S. Roux and F. Radjai, On the state variables of the granular materials. In: H. Aref and J. W. Philips (eds),

Mechanics of a New Millenium. Dordrecht: Kluwer (2001) pp. 181–196.
59. S. Luding. Micro-macro models for anisotropic granular media. In: P.A. Vermeer, W. Ehlers, H.J. Herrmann

and E. Ramm, Modeling of Cohesive-Frictional Materials. Rotterdam: Balkema (2004) pp. 195–205.


